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Abstract: Predicting remaining useful life (RUL) of bearings under scarce labeled data is significant for intelligent
manufacturing. Current approaches typically encounter the challenge that different degradation stages have similar
behaviors in multisensor scenarios. Given that cross-sensor similarity improves the discrimination of degradation
features, we propose a multisensor contrast method for RUL prediction under scarce RUL-labeled data, in which we
use cross-sensor similarity to mine multisensor similar representations that indicate machine health condition from
rich unlabeled sensor data in a co-occurrence space. Specifically, we use ResNet18 to span the features of different
sensors into the co-occurrence space. We then obtain multisensor similar representations of abundant unlabeled
data through alternate contrast based on cross-sensor similarity in the co-occurrence space. The multisensor similar
representations indicate the machine degradation stage. Finally, we focus on finetuning these similar representations
to achieve RUL prediction with limited labeled sensor data. The proposed method is evaluated on a publicly available
bearing dataset, and the results show that the mean absolute percentage error is reduced by at least 0.058, and the
score is improved by at least 0.122 compared with those of state-of-the-art methods.
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1 Introduction 2019). As a critical component of intelligent ma-

chine health management (Tao et al., 2018; Souza

Remaining useful life (RUL) prediction for bear-
ings aims to forecast the time duration from current
operation until failure of the bearings (Wen et al.,
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et al., 2021; Wang WJ et al., 2022), RUL predic-
tion for bearings can assist in reducing maintenance
costs and preventing significant losses from acci-
dents, thereby improving the competitiveness.

Traditional approaches for RUL prediction for
bearings can be broadly classified as model-based
and statistics-based methods. Model-based meth-
ods (Morales-Espejel and Gabelli, 2020) require ex-
tensive domain knowledge to build physical models
that accurately reflect machine degradation. How-
ever, obtaining domain knowledge is challenging,
and building accurate physical models is difficult
due to the complex system structure and operating
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environment. On the other hand, statistics-based
methods (Li Q et al., 2022) focus on building a
stochastic model that describes the degradation pro-
cess to predict RUL based on monitored machine
degradation variables. Nevertheless, these methods
have limited processing ability on low-quality data.

In recent years, using deep learning for RUL pre-
diction for bearings has become a research trend due
to its effectiveness in improving prediction accuracy.
Data-driven approaches (Wang B et al., 2020; Wang
X et al., 2021) use deep learning models to establish
potential relationships between machine monitoring
data and RUL labels or degradation labels. These
approaches having powerful degradation feature ex-
traction capabilities could effectively handle massive
and complex structured data and reduce the need for
domain knowledge.

Compared to model-based and statistical-based
approaches for RUL prediction for bearings, data-
driven approaches heavily rely on RUL-labeled data.
As manufacturing levels continue to improve and ma-
chine reliability gradually increases, it is often chal-
lenging to obtain a sufficient amount of failure data
with RUL labels over a short-term period or too ex-
pensive to obtain data. Therefore, data-driven ap-
proaches still face challenges in practical applications
due to the scarcity of degradation data with RUL
labels.

Benefiting from recent significant progress in ad-
dressing the lack of labeled data in areas such as
computer vision (Korbar et al., 2018; Tian et al.,
2020; Zhu and Pu, 2021; Wang YT et al., 2023),
self-supervised techniques provide solutions for RUL
prediction for bearings under scarce labeled data,
but current efforts suffer from poor discrimination
of degradation features. Typically, current meth-
ods (Ding et al., 2022; Krokotsch et al., 2022; Akrim
et al., 2023; Kong et al., 2023) treat each sensor sig-
nal as a channel and mine the temporal autocorre-
lation of multisensors from massive unlabeled sensor
data during pretraining. Temporal autocorrelation
is then used as a representation and finetuned with
the limited labeled data to achieve RUL prediction.
However, methods using stacked channels may have
the weakness in possessing similar sensor signals in
different degradation states, which is not favorable
for RUL prediction. We stack the vertical and hor-
izontal acceleration time—frequency matrices of the
bearings and calculate the cosine similarity of the

stacked matrices at any two moments, as shown in
Figs. 1a and lc. The figures illustrate that there are
plenty of red high-similarity regions, which indicate
similar sensor signals at different degradation states.
To improve the discrimination of degradation fea-
tures, we employ multisensor similarity. As shown in
Figs. 1b and 1d, we first take the dot product of the
vertical and horizontal acceleration time—frequency
matrices, and then calculate the cosine similarity
of the dot product matrices at any two moments.
This approach significantly reduces the similarity of
sensors in different degradation states compared to
Figs. 1a and 1c.

Hence, we propose a multisensor contrast neural
network, in which cross-sensor similar features indi-
cating machine health conditions are captured from
a large amount of unlabeled sensor data. Specially,
the sensor data are mapped to the time—frequency
domain through wavelet transform. Then, we de-
vise an alternate contrast process to extract simi-
lar features between sensors from a large amount of
unlabeled data. The similar features indicate ma-
chine health conditions. In the alternate contrast
stage, the multibranch ResNet18 is used as a feature
extractor to span the features into a co-occurrence
space between sensors. In the co-occurrence space,
any sensor is selected as the main sensor, and the re-
maining ones are regarded as auxiliary sensors. The
auxiliary sensor feature extractor uses momentum
update to ensure the consistency of features. Then,
we calculate the similarity between the main sensor
feature and those of auxiliary sensors. By optimiz-
ing the noise contrastive estimation (NCE) loss, we
enforce the maximum similarity between the main
sensor feature and its corresponding auxiliary sen-
sor features at the same moment, thereby extracting
the similar feature between the main sensor and the
auxiliary sensors. We repeat the above process until
each sensor has served as the main sensor, leading
to highly discriminative degradation features. Next,
the model is finetuned by using the scarce data with
RUL labels. In the finetuning stage, attention is paid
to adjusting feature weights. Ultimately, RUL pre-
diction under scarce labeled sensor data is achieved
with the assistance of rich unlabeled sensor data.

Overall, the main contributions of the proposed
method are summarized as follows:

1. A multisensor contrast neural network is pro-
posed, which can use a large amount of unlabeled
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Fig. 1 Stacking multisensors causes different degradation states to behave similarly, and cross-sensor corre-
lation improves the discrimination of degradation features: (a) the cosine similarity matrix between stacked
signals at any two moments of bearing 1_1; (b) the correlation between the vertical and horizontal acceleration
time—frequency signals calculated using the dot product, and the cosine similarity matrix between correlations
at any two moments of bearing 1_1; (c) the cosine similarity matrix between stacked signals at any two
moments of bearing 1_2; (d) the correlation between the vertical and horizontal acceleration time—frequency
signals calculated using the dot product, and the cosine similarity matrix between correlations at any two
moments of bearing 1 2. References to color refer to the online version of this figure

multisensor degradation data to model the degrada-
tion process and achieve RUL prediction when RUL
labeled data are scarce. Compared with existing
works, this method can extract more discriminative

degradation features through cross-sensor contrast.

2. A cross-sensor alternate contrast process
is devised to effectively mine highly discriminative
degradation features from a large amount of unla-
beled sensor data by maximizing the similarity of
multisensor features at the same moment. Compared

with existing works, the cross-sensor alternate con-
trast process can greatly improve the distinction of
degradation features regarding RUL by mining po-
tential shared degradation features among multisen-
sors through alternate contrast.

3. The proposed method is evaluated on the
Franche-Comté electronics mechanics thermal sci-
ence and optics—sciences and technologies (FEMTO-
ST) bearing dataset and the results show that the
mean absolute percentage error (MAPE) is reduced
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by at least 0.058, and the score is improved by at
least 0.122 compared with those of state-of-the-art
methods.

2 Related works

2.1 Works based on the FEMTO-ST bearing
dataset

The FEMTO-ST bearing dataset is a dataset
containing 17 sets of full-cycle bearing degradation
data for three operating conditions and is mainly
used to study RUL prediction for bearings. Recent
research on the FEMTO-ST bearing dataset focuses
on improving the accuracy of RUL prediction and
the predicted RUL across working conditions.

Recent RUL prediction efforts have been excel-
lent with sufficient data (Yang et al., 2023; Zou et al.,
2023). LiY et al. (2022) proposed a two-dimensional
long short-term memory (2D-LSTM)-based fusion
network for RUL prediction. The 2D-LSTM frame-
work is used to extract deep time features of sensor
data one by one and fuse multisensor features us-
ing an information fusion unit (IFU) to predict the
RUL of bearings. Zuo et al. (2023) proposed a hy-
brid attention-based multiwavelet coefficient fusion
method to evaluate the RUL of bearings. A hy-
brid attention-based convolutional LSTM network
was used to self-adaptively extract features from the
original signal after wavelet packet transformation
to evaluate RUL. These efforts have demonstrated
excellent performance.

Another research area of interest is to achieve
accurate RUL prediction across operating condi-
tions (Behera and Misra, 2023; Dong et al., 2023),
and these approaches show excellent performance
when relying on source domains with sufficient la-
beled RUL data. Deng et al. (2023) proposed
a calibration-based hybrid transfer learning frame-
work to improve data fidelity and model general-
ity while demonstrating superiority in prediction ac-
curacy and uncertainty quantification. To predict
the RUL of bearings under invisible operating con-
ditions, Ding et al. (2023) proposed an adversar-
ial out-of-domain augmentation framework to gener-
ate pseudo-domains, thus increasing the diversity of
available samples, and improving the generalization
of inaccessible target domains.
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2.2 Self-supervised learning

Deep neural network represented by convolu-
tional neural network and the Transformer has made
remarkable strides in the fields of computer vision
and natural language processing, but it usually re-
lies on sufficient labeled data. In some special fields,
such as intelligent manufacturing and medicine, it is
often very difficult to collect enough labeled data.
Self-supervised learning can transform unsupervised
learning based on unlabeled data into supervised
learning based on labeled data by leveraging certain
properties of unlabeled data to set pseudo-supervised
tasks and learn features that are beneficial to the real
task.

Self-supervised methods are mainly classified
into generation-based methods and contrast-based
methods. The generative methods are mainly con-
cerned with the pseudo-supervisory task of data gen-
eration. The contrast-based approaches verify that
multiple different input data channels correspond
to each other. Tian et al. (2020) constructed a
contrast pseudo-supervision task by maximizing the
mutual information between different views of the
same scene. Korbar et al. (2018) matched the vi-
sual and auditory elements of the video to achieve
self-supervised learning

At present, there are relatively few research
works (Melendez et al., 2019; Saeed et al., 2021;
Zhang BM et al., 2021; Zhang WW et al., 2021)
on the self-supervised RUL prediction. Ding et al.
(2022) proposed a method to learn the multisensor
self-sequence temporal correlation by contrasting the
similarity between different sensor data augmenta-
tions. Krokotsch et al. (2022) considered the higher
similarity of adjacent sensor time-series, and used
the network to estimate the time difference between
any two segments of a time-series segment. These
methods all perform well but retain the difference be-
tween multisensors which may adversely affect RUL
prediction.

3 Overview
3.1 Preliminary

Definition 1 (RUL) The RUL corresponds to
the duration of machine operation from the start
moment ¢ to the failure moment 7'. This is formally
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described as follows:
T — T > t. (1)

Definition 2 (RUL prediction) Estimation of
machine RUL at the beginning of prediction is based
on effective information, such as machine health con-

dition. This is formally described as follows:
T — T > t,Z(t), (2)

where Z(t) represents the valid information such
as the machine health condition. In what follows,
we use Z instead of Z(t) for notational simplic-
ity. Machine health condition is usually constructed
from sensor data to reflect the degree of machine
degradation.

3.2 Problem formulation

Model E(-) is constructed based on the unla-
beled RUL sensor dataset X" € RN"*C*M and the
labeled RUL sensor dataset X! € RN XXM 4 hyild
machine health condition Z, where N* and N! are
the amounts of data in the cases of unlabeled RUL
and labeled RUL, respectively (N% > N!). Addi-
tionally, C' is the number of sensors, M is the length
of the time-series, and R is the set of real numbers.
Then, a prediction model f(-) is constructed to es-
tablish the association between the machine health
condition Z and RUL. The ultimate goal is to pre-
dict the corresponding RUL based on the sensor data
x(t) € RE*M at the starting moment ¢.

Z(t) = E(t)| X", X", 3)
RUL = f(Z(1)). (4)

4 Method
4.1 Framework

Fig. 2 shows the framework of multisensor con-
trast neural network with attention. It includes
mainly three parts: data preprocessing, alternate
contrast, and finetuning. The data preprocessing
step transforms the original signal into a time-—
frequency domain by wavelet transform to extract
the features of the time and frequency domains at
the same time. Alternative contrast is composed
of feature extractor and feature contrast, and al-
ternately captures similar features between multi-

sensors. The feature extractor spans the nonlinear
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features extracted from the time—frequency domain
without RUL labels into a co-occurrence space to
learn similar features between sensors. In feature
contrast, one sensor is regarded as the main sensor,
and the others are regarded as the auxiliary sensors.
The auxiliary sensor feature extractors use momen-
tum updates to ensure the consistency of features.
Then, the similarity between the main sensor fea-
ture and the auxiliary sensor features is calculated
in the co-occurrence space, and the features at the
same moment for different sensors with the maxi-
mum similarity are obtained by optimizing the NCE
loss. We repeat the above process until each sensor
serves as the main sensor to obtain the similarity
between different sensors. Finetuning reuses the pa-
rameters of the feature extractor and initializes the
predictor, thereby reducing the need for labeled data
in the finetuning stage. Feature fusion makes full use
of features from different sensors, and the attention
mechanism adjusts feature weights to achieve RUL
prediction.

4.2 Data preprocessing

Considering that in the machine degradation
process, not only the amplitude but also the fre-
quency will gradually change. The frequency and
time features are revealed through data preprocess-
ing. The methods of transforming the original sig-
nal from the time domain to the time—frequency do-
main mainly include short-time Fourier transform
(STFT) and wavelet transform. Since the sensor sig-
nal is usually nonstationary and the window of the
STFT is fixed, the high-frequency signal is suitable
for STFT with a small window and a low-frequency
signal is suitable for STFT with a large window;
thus, STFT cannot meet the needs of nonstation-
ary signal changes. The wavelet transform replaces
the infinitely long trigonometric function basis in
the Fourier transform with a finitely long decay-
ing wavelet basis, so it can show the corresponding
time when the different frequency components ap-
pear. The wavelet transform formula is as follows:

I, — ;a /_Z o on (t;l?) a,  (5)

where x;(t) represents the original signal of the 7*!
sensor with ¢ as the starting time and ¢t+ L as the end-
ing time. L is the length of the input time-series, a is
the scale parameter, [ is the translation parameter,
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Fig. 2 The structure of the proposed framework. Dictionary: select any sensor alternately as the main sensor,
and the others as auxiliary sensors; a dictionary is formed from the corresponding auxiliary sensor features;

Enqueue:

add the auxiliary sensor features of each batch to the corresponding dictionary; Dequeue:

the

earliest enqueued feature in the dictionary is deleted; Query: calculate the similarity between the main sensor
feature and dictionary, and thus obtain the most similar auxiliary sensor feature; Momentum update: ignore
the gradient of the auxiliary sensor network and use momentum to update slowly

and (iﬁ ) represents the mother wavelet func-
tion. Here we choose the Gaussian derivative wavelet
Through wavelet
transform, the sensor raw signal x;(¢) of the sensor

as the mother wavelet function.

is transformed into a time-frequency matrix I; ;.
Bilinear interpolation ¢(-) reduces the dimen-

sion of the time—frequency matrix I;; to speed up

feature extraction. The equation is as follows:

Iiw = (i), (6)
where T it 1s the time—frequency matrix after wavelet
transformation and dimension reduction of the orig-
inal signal of the i*" sensor with ¢ as the start time
and t + L as the ending time.

4.3 Alternate contrast

Since only a large amount of unlabeled sensor
data is available during the alternate contrast phase,
it is necessary to use the characteristics of the sensor
data as training labels. For multisensor systems, a
good machine health condition is invariant across
sensors. In our work, it is desired to obtain de-
generate features that are invariant across sensors,
There-
fore, the alternate contrast is performed using cross-
sensor similarity to maximize the similarity of multi-
sensor features at the same moment while suppress-
ing the similarities of multisensor features at different

which indicate machine health conditions.

moments to obtain highly discriminative cross-sensor
invariant degradation features.

4.3.1 Main sensor selection

A multibranch network is constructed to extract
the features of each sensor and span a co-occurrence
space. In this paper, the ResNet18 backbone net-
work E as the feature extractor and the fully con-
nected layer C as the predictor are constructed as
a multibranch network. We select the i*" sensor V;
as the main sensor V;;, the corresponding backbone
network f; is denoted as fi,, and the time—frequency
matrix Ilt is denoted as fm,t. The other sensors V;
(i # j) are regarded as auxiliary sensors V, , the
corresponding backbone network f; is recorded as

fa;, and the time—frequency matrix I, is denoted
as jaj,k-

4.3.2 Feature dictionary

The feature g; of the main sensor is the ma-
chine health condition recorded by the main sen-
sor at time ¢. The feature dictionary D; consists
of the features {d;,d;1, - ,d;j } of the j'" auxil-
iary sensor. The meaning of D; is the machine health
condition recorded at K +1 different moments by the

4t auxiliary sensor. It is formulated as follows:

q: = fm(jm,t) = Cm(Em(Im,t))a (7)
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dj,k = faj (Iaj,k)

where fy,, Ci, and E,, refer to the backbone net-
work, predictor, and feature extractor corresponding

= C(B, (L), (8)

J

to the main sensor respectively, and fa;, Ca;, and
E,, refer to the backbone network, predictor, and
feature extractor corresponding to the j*" auxiliary
sensor respectively.

4.3.3 Feature similarity calculation

First, the degradation feature g; of the main
sensor at moment ¢ and the feature dictionary D; =
{djo,d;1, - ,dj i} corresponding to the j*® auxil-
iary sensor are given.

Then, the similarity Sim{,k between the main
sensor feature g; and the degradation feature d; ;, at
moment k (k =0,1,---, K) in the dictionary D; is
shown in Eq. (9):

NF
Simg,k =q; - djp = Z ay ;‘l,ka 9)
n=1

where “-” denotes the dot product. N¥ denotes the
number of elements in the degenerate features g; and
dj. gid}, denotes the multiplication of the nth
element in the degenerate feature g; with the n'®
element in the degenerate feature d; .

Finally, following the above steps, the similarity
{Sim{’o, Sim{,17 e ,Sim{’K} between the main sen-
sor degradation feature g; and all the degradation
features dj’o, dj,17 s
Dj is calculated.

,d; g in the feature dictionary

4.3.4 Loss function

The feature similarities at different moments are
normalized using softmax. Let the multisensor fea-
ture similarity Sim{’t with the matching label of the
same moment ¢ be 1 and the multisensor feature sim-
ilarity with the matching labels of different moments
be 0. Then the normalized feature similarities are fed
into the cross-entropy. The cross-entropy maximizes
the similarity of multisensor features at the same
moment while suppressing the similarity of sensor
features at different moments. In summary, to max-
imize the similarity of sensor features at the same
moment to obtain the degradation features that are
invariant across sensors, the NCE loss function Lxcg
is constructed by measuring the sensor similarity by

Liu et al. / Front Inform Technol Electron Eng 2025 26(7):1180-1193

dot product as follows:

Lnce = — Z log, (sm{ t) f: Sim? ,
J exp - + exp ( - )
k=0,k#t

+ pie 1Ol
(10)
where 7 is the temperature hyperparameter, p. is
the regularization weight, and ||0., ||, represents the
L regularization of the main sensor network f,.
The feature g; of the main sensor looks for the
most similar sample among the K + 1 samples of
auxiliary sensors, and this process is similar to the
K + 1 classification of feature g;.

4.3.5 Feature dictionary update by enqueuing and
dequeuing

Since the feature g; is constantly changing dur-
ing the training process, the feature dictionary needs
to be dynamically maintained. Longer dictionaries
will use auxiliary sensor data. Since the length of the
feature dictionary is much larger than the batch size,
it is impractical to recalculate all the features in the
feature dictionary each time. Therefore, updating is
accomplished by queuing in a first-in-first-out mode.
In each batch, auxiliary sensor features are enqueued
to the corresponding feature dictionary, and the old-
est auxiliary sensor feature is dequeued.

4.3.6 Updating auxiliary sensor network parameters

Because the auxiliary sensor backbone network
is being updated, the parameters corresponding to
these oldest features may be significantly different
from the current parameters. Through the above
operations, the dynamic update of the feature dic-
tionary is gradually achieved, while ensuring that the
dictionary length can be much larger than the batch
size. It will reduce consistency among features in
the dictionary by the rapidly changing parameters
of the auxiliary sensor network. Therefore, the gra-
dients of the auxiliary sensor networks are ignored
and the momentum update is used for parameters
update (He et al., 2020).

0; < mb; + (1 —m)bp, (11)
where m is the momentum update factor, 6, repre-
sents the main sensor network parameters, and 6; is
the j*" auxiliary sensor network parameters.
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4.3.7 Alternate mechanism

The above processes are alternated every Fey
epochs until each sensor has served as the main sen-
sor to ensure that the network of each sensor can
learn good representation. Note that Fuy is the
hyperparameter.

4.4 Finetuning

At the alternate contrast stage, the model
has extracted cross-sensor invariant degradation fea-
tures.
sensor invariant degradation features and RUL, the
model is finetuned using scarce sensor data with RUL
labels. The parameters of the feature extractor are
reused and the predictor Cr is initialized.

To establish an association between cross-

4.4.1 Feature fusion

Features from different sensors are fused to fully
use them. The fusion method selects concatenation,
and the formula is as follows:

F; = Cat ([El (I_l,t) , B <f2,t) o By (I_i,t)}) , (12)

where Cat is the feature concatenation operator, and
F; is the concatenated feature. Specifically, it means
that the degenerate features £ (jl,t)7 FEs (fg’t), cee
E; (ji,t) are concatenated according to the last di-
mension. E;(-) refers to the feature extractor corre-
sponding to the i*" sensor.

4.4.2 Attention mechanism

Spatial attention A is devised to adjust feature
weights. The corresponding equations are as follows:

A, = Softmax (Wias + bi) , (13)

o = Tanh (W, F, + b,), (14)

where ay is the nonlinear feature, W and W, are
trainable weight parameters, and bs and b; are train-
able bias parameters. Tanh and Softmax are both
nonlinear activation functions.

Ft :AS*Ft, (15)

where “x” is the element-wise multiplication, and F,
is the feature after attention reconstruction.
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4.4.3 RUL prediction

The predictor Cr performs regression prediction
on the reconstructed feature F.

RUL, = Cr (F}) , (16)

where RUL, € R" is the RUL predicted by the
model. The loss function Ly at the finetuning stage
is formulated as follows:

Ly = (RULp — )" + pae |02, (17)

where y; is the corresponding RUL label, ||0]|2 repre-
sents Lo regularization, and ¢ is the regularization
coefficient.

5 Experiments and results
5.1 Data and setup
5.1.1 Description of datasets

The FEMTO-ST bearing dataset (Nectoux
et al., 2012) contains accelerated degradation data of
bearings. The bearing operating state was recorded
every 10 s using vertical and horizontal acceleration
sensors with a sampling frequency of 25.6 kHz. Each
sampling lasted 0.1 s. This dataset contains a total
of 17 bearing degradation datasets under three op-
erating conditions. The analysis of this dataset is
listed in Section I of supplementary materials.

5.1.2 Dataset setup

In real-world scenarios, factories usually collect
only limited RUL-labeled data and a huge amount
of unlabeled degradation data due to expensive col-
lection costs and other reasons. Due to the limited
research on RUL prediction in this scenario, there is
currently a lack of publicly available datasets that are
suitable for this scenario. For the research and com-
parison with the baseline methods, we make reason-
able modifications to the original FEMTO-ST bear-
ing dataset that contains a large amount of RUL
data. The modifications to the dataset are aligned
with real-world scenarios and can serve as a reference
for subsequent similar research.

The training data for the alternate contrast
phase and the finetuning phase of the experiments
are shown in Table 1. The unlabeled dataset is con-
structed with a large amount of unlabeled data in
the alternate contrast phase, and the RUL labeled
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Table 1 Experimental dataset setup

Working
condition

Alternate contrast phase
(Training without RUL labels)

bearing 1 2, bearing 2 1,
bearing 2 2, bearing 3_1,
bearing 3 2

Condition 1

bearing 1 1, bearing 1_ 2,
bearing 2 2, bearing 3 1,
bearing 3 2

Condition 2

bearing 1 1, bearing 1_ 2,
bearing 2 1, bearing 22,
bearing 3 2

Condition 3

dataset is constructed using a few RUL data in the
finetuning phase. In the alternate contrast phase,
the model is pre-trained using only the vibration ac-
celeration data of the bearings. During the alternate
contrast phase, any RUL labels are not involved in
the training of the model. Then, in the finetuning
phase, the model is finetuned using a small number
of vibration accelerations with RUL labels. The la-
bels are related to the training phase and not to the
sensors themselves.

Taking Condition 1 as an example. The dataset
used during the alternate contrast phase includes de-
graded data from bearing 1 2, bearing 2 1, bearing
2 2, bearing 3 1, and bearing 3_2. During the
entire alternate contrast process, there are no RUL
labels involved in the training. During the finetuning
phase, the model is finetuned using only the RUL-
labeled vibration acceleration data for the last 50%
of the bearing 1 1. Bearing 1 3, bearing 1 4, bear-
ing1l 5, bearing1 6, and bearing 1 7 constitue the
test sets.

5.1.3 Hyperparameters

In the alternate contrast stage, the regulariza-
tion factor g is 0.0001, the learning rate is 0.0001,
the number of epochs is 800, and the main sensors
alternate every 100 epochs. Stochastic gradient de-
scent (SGD) is selected as the optimization algo-
rithm, and the corresponding momentum is 0.9. The
batch size is 128, the dictionary size K + 1 is 3201,
the momentum update factor m is 0.999, the temper-
ature coefficient 7 is 0.07, and the feature dimension
is 128.

In the finetuning stage, the regularization factor
1t takes a value of 0.01, the learning rate is 0.0001,

50% of bearing 1 1 data

50% of bearing 2 1 data

50% of bearing 3_1 data

Finetuning phase Test data

(Training with RUL labels)

bearing 1 3, bearing 1_4,
bearing 1_5, bearing 1_6,
bearing 1 7

bearing 2 3, bearing 24,
bearing 2 5, bearing 2 6,
bearing 27

bearing 3 3

and the number of epochs is 200. SGD is selected as
the optimization algorithm, the corresponding mo-
mentum is 0.9, and the batch size is 128.

5.1.4 Metrics

The evaluation metrics are MAPE and the score.
They are formulated as follows:

11 RUL
1 < |ActRUL; — RUL;|
MAPE = 18
11 ; ActRUL; 7 (18)
ActRUL; — RUL,
= oL x 100%, (19)
1 11
_ A 2
score 11 ; ? ( 0>
—In(0.5)(Er; /5) if Er; <0
[ exp o MBS,
A; = { eXp+ 1n(0.5)(Eri/20), if Er; > 0, (21>

where A; is the metric that measures the prediction
accuracy of the model for the i*" bearing, ActRUL;
and ITU\Ll are the true and predicted RUL values of
the i*" bearing, and Er; is an official intermediate
metric used to evaluate the accuracy of RUL predic-
tion. The score reflects the average performance of
the model in predicting the final RUL of the 11 bear-
ings. The higher the score is, the better the model
performance will be. Further, the lower the MAPE,
the higher the model performance.

5.1.5 Baselines

Due to our goal of RUL prediction under scarce
labeled data, we choose four self-supervised methods
to better show the method performance.
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Self-supervised pretraining via contrast learning
(SSPCL) (Ding et al., 2022): SSPCL is based on data
augmentation. The most similar variant to the cur-
rent variant is searched among all moments of data
variants augmented by other data in the pretraining
phase.

Self-supervised learning (SSL) (Krokotsch et al.,
2022): An SSL model is proposed for RUL predic-
tion. The time interval between any two time-series
segments is estimated in the pretraining phase, thus
learning the temporal correlation of the signals.

Deep self-supervised learning (DeepSSL)
(Akrim et al., 2023): A DeepSSL model is proposed
to overcome the lack of labeled data for RUL pre-
diction. The encoding and decoding architectures
are designed using the gated recurrent unit (GRU)
to perform temporal prediction of the sensor signals
in the pretraining phase.

Unlabeled sample learning (USL) (Kong et al.,
2023): A contrastive learning framework is pro-
posed for RUL prediction. First, an unlabeled sam-
ple augmentation is developed to extend the sample
set. Then, an USL architecture is proposed to learn
degradation information from unlabeled samples to
improve the performance of general deep learning
models in RUL prediction.

5.1.6 Experimental fairness

Our problem setting involves massive unlabeled
sensor data and scarce sensor data with RUL la-
bels. The self-supervised method has training data
that are consistent with our method in two phases.
Thus, all comparisons of our method with the self-
supervised baselines are fair.

5.2 Results
5.2.1 Comparison with self-supervised baselines

Our proposed method and all self-supervised
baseline methods are validated on 11 bearings us-
ing a large amount of unlabeled bearing data and
50% of the labeled degradation data. Table 2
presents the true values of RUL, the predicted val-
ues of RUL, MAPE, and the score (the mean value
of A;). Our method achieves an optimal score of
0.738 and MAPE of 0.108, while the suboptimal
score is 0.616 and the suboptimal MAPE is 0.166.
Our proposed multisensor contrast neural network
outperforms SSPCL, SSL, DeepSSL, and USL in
terms of MAPE and score, with at least a 0.058
decrease in MAPE, and a 0.122 increase in score.
These results demonstrate the effectiveness of our al-
ternate contrast, which maximizes the similarity of
features between multisensors at the same moment,

Table 2 Experimental results for comparison with self-supervised methods with 50% labeled data and sufficient

unlabeled data

. B B B B B B B B B B ,
Metric Method 13 14 15 16 7 23 24 25 26 27 3g Mean
True

5730 339 1610 1460 7570 7530 1390 3090 1200 580 820
RUL (s)
SSL 5402 282 1426 1576 5044 3139 1446 2803 1072 524 749
redioted | SSPCL 3484 287 1348 1334 3907 3709 1167 2634 1156 523 729
RUL ()  DePSSL  BOT 207 1479 ST 602 2778 1202 %518 10T 443 TG
USL 5445 279 1300 1344 6953 2344 1269 2573 1103 492 762
Our method 5607 314 1505 1483 7000 2670 1418 2807 1204 543 783
SSL 0.820 0558 0.673 0332 0315 0133 0572 0725 0557 0.716  0.741  0.558
SSPCL 0257 058 0569 0741 0.187 0.172 0573  0.600 0.698 0711 0.681  0.525
A DeepSSL 0.803  0.651 0.754 0774 0613 0.112  0.626 0526 0.612 0441 0.763  0.607
USL 0.842 0542 0513 0759 0754 0092 0.740 0560 0.605 0591 0.783  0.616
Our method 0.928 0.774 0.798 0.804 0.770 0.107 0.756 0.728 0.794 0.802 0.855 0.738
SSL 0057 0.168 0.114 0079 0334 0583 0040 0093 0.169 0.097 0087 0.166
SSPCL 0392 0.153 0163 0.086 0484 0.507 0160 0.148 0.104 0098 0111 0.219
MAPE  DeepSSL  0.063 0.124 0081 0018 0.141 0631 0135 0185 0.142 0236 0078 0.167
USL 0050 0.177 0.193 0079 0.082 0.689 0087 0.167 0.145 0.152 0071 0.172
Our method  0.021 0.074 0.065 0.016 0.075 0.645 0.020 0.092 0.067 0.064 0.045 0.108

B denotes bearing; e.g., B 1_3 denotes bearing 1 3. The mean value of A; is the official metric score of the FEMTO-ST dataset.

The higher the score is, the better the model performance will be. Best results are in bold
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emphasizing the discriminative power of similar fea-
tures across sensors. Self-supervised RUL prediction
algorithms, represented by SSL, SSPCL, DeepSSL,
and USL, typically construct pretraining tasks by
stacking sensor signals and exploiting the temporal
correlation of sequences. However, these algorithms
may be inefficient when the multisensor signals at
different degradation stages are relatively similar.
Therefore, our proposed method is needed to im-
prove the discrimination of the features and achieve
better performance by constantly alternating con-
trast to maximize the similarity of features among
multisensor at the same moment.

We notice that compared with other bearings,
the RUL prediction effect for bearing 2 3 is unsatis-
factory. However, all the comparison baselines strug-
gle to achieve good performance. This is possibly due
to the uniqueness of bearing 2 3 itself, which makes
it difficult to predict effectively given the scarcity of
labeled RUL data.

Fig. 3 shows the RUL prediction for bearing
1 3. As can be observed from Fig. 3, in the early
stage of bearing degradation, RUL prediction is close
to horizontal, and our method does not perform very
well. Whereas at the end of bearing degradation, our
method can fit RUL change better. This is because
during model training, we only use labeled data from
the second half of the bearing degradation, so our
method will perform better at the second half of the
stage.

—— Our method
—— True RUL

20000
©£15000
2

¥ 10000

5000

0 250 500 750 1000 1250 1500 1750
Used time (x10 s)

Fig. 3 RUL prediction for bearing 1 3. The horizon-
tal axis is the used time and the vertical axis is the
predicted RUL

Fig. 4 shows the visualization of the bearing 1 3
fusion feature after t-distributed stochastic neighbor
embedding (t-SNE). Blue and green colors represent
the early stage of degradation, yellow and orange in-
dicate the middle stage of degradation, and red shows
the end stage of degradation. The degradation tra-
jectory is visible, and the transition from the current
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degradation stage to the next degradation stage can
be very smooth. This proves that our method cap-
tures the degradation pattern of the bearing.

40

22500
30
20000
17500

15000 5

12500 3
['4

Early

degeneration 10000

20 7500

~30 . , 5000
degeneration

-40 2500

-80 60 40 20 0 20 40 60 80
X

Fig. 4 Degenerate trajectories of bearing 1 3 in fea-
ture space. References to color refer to the online
version of this figure

5.2.2 Ablation studies

To better explain the superiority of our method,
ablation experiments are designed to construct the
following two variants:

Variant-NP: To verify the effectiveness of the
alternate contrast phase in the framework, the al-
ternate contrast phase is skipped and the model
is trained directly using a few data with RUL la-
bels, and the remainder of the framework is retained
unchanged.

Variant-Loss: To verify the effectiveness of the
NCE loss function in the framework, the NCE loss
function is replaced with the mean squared error
(MSE) loss function for calculating the feature dif-
ferences between different sensors at the same mo-
ment, and the remainder of the framework remains
unchanged.

Table 3 presents a comparative analysis of pre-
dicted RUL, MAPE, and the score of our proposed
method and its variants. We conduct these experi-
ments to verify the effectiveness of the alternate con-
trast and NCE loss of our proposed method. To
verify the effectiveness of alternate contrast, our pro-
posed method is compared with Variant-NP, which
does not have the alternate contrast mechanism.
Compared with Variant-NP, MAPE of our proposed
method is reduced by 0.184, and the score is im-
proved by 0.302. Alternate contrast based on cross-
sensor similarity can effectively reduce the need for
labeled RUL data by capturing multisensor similar
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Table 3 Ablation results
. B B B B B B B B B B B
Metric Method 13 14 15 16 17 23 24 25 26 27 g3 Mean
True X
5730 339 1610 1460 7570 7530 1390 3090 1290 580 820
RUL (s)
Predicted Variant-NP 4889 192 1110 770 6924 2559 1172 1445 1110 499 706
;U;(e) Variant-Loss 4896 211 1201 1186 6200 2556 1205 1982 1114 454 681
s Our method 5607 314 1505 1483 7000 2670 1418 2807 1204 543 783
Variant-NP 0.601 0.222 0.341 0.194 0.744 0.101 0.581 0.158 0.617 0.616 0.618 0.436
A; Variant-Loss  0.604 0.270 0.415 0.522 0.534 0.101 0.630 0.289 0.623 0.471 0.556 0.456
Our method 0.928 0.774 0.798 0.804 0.770 0.107 0.756 0.728 0.794 0.802 0.855 0.738
Variant-NP 0.147 0.434 0.311 0.473 0.085 0.660 0.157 0.532 0.140 0.140 0.139 0.293
MAPE Variant-Loss ~ 0.146 0.378 0.254 0.188 0.181 0.661 0.133 0.359 0.136 0.217 0.170 0.257
Our method 0.021 0.074 0.065 0.016 0.075 0.645 0.020 0.092 0.067 0.064 0.045 0.108

B denotes bearing; e.g., B 1_3 denotes bearing 1 3. Best results are in bold

features. It also demonstrates that our model does
not rely on finetuning to achieve good results.

To verify the effectiveness of NCE loss, our pro-
posed method is compared with Variant-Loss, which
uses MSE loss instead of NCE loss. Compared with
Variant-Loss, the MAPE of our proposed method
is reduced by 0.149, and the score is improved by
0.282. The MSE loss captures multisensor similar-
ity by closing the distance between multisensor fea-
tures at the same moment. NCE loss ensures that
cross-sensor invariant highly discriminative degrada-
tion features are extracted by drawing on the idea of
classification to extract multisensor similarity at the
same moment, while suppressing multisensor feature
similarities at different moments.

5.2.3 Hyperparametric sensitivity analysis

Fig. 5 shows the effects of the dictionary size
on the model performance. As the dictionary size
This is
because the larger the dictionary size in the alter-
nate contrast phase is, the more difficult it will be to

increases, the prediction error decreases.

match the main sensor features to the auxiliary sen-
sor features at the same moment, which will enhance
the model’s ability to extract similar features across
Sensors.

To further analyze the performance of the pro-
posed method, we compare the performance of the
proposed method with the supervised baselines, as
well as analyze the effect of the amount of labeled
data on the performance of the proposed method.
These experimental results are located in Section 2
of supplementary materials.

6 Conclusions

In this paper, for RUL prediction, we propose a
multisensor contrast method that uses abundant un-
labeled sensor data to assist a small amount of sen-
sor data with RUL labels. Typically, current meth-
ods stack multisensor signals and mine the multisen-
sor temporal autocorrelation from a large amount of
unlabeled sensor data during pretraining, but suf-
fer from poor discrimination of degradation features.
Our approach uses an alternate contrast process to
capture similar features (machine health conditions)
among multisensors, and can effectively improve the
discrimination of degradation features. The atten-
tion mechanism is used for finetuning to establish
an association between degradation features and
RUL. We fully evaluate our approach using the open
FEMTO-ST bearing dataset, where the test dataset
contains 11 sets of bearing degradation data under
three different operating conditions. The proposed
model outperforms other state-of-the-art baselines
on test data, showing that, for RUL prediction, our
proposed model can use rich unlabeled sensor data
to assist a few sensor data with RUL labels.

Our method has some limitations. For example,
our model considers only the bearing functioning un-
der a single operating condition and ignores the ef-
fect of variable operating conditions on the RUL.
From the application perspective, our proposed mul-
tisensor contrast framework can greatly improve the
prediction accuracy using only a small amount of la-
beled degradation data and thus can be widely used
for the prediction of a bearing’s RUL, thereby re-
ducing the failure maintenance cost of bearings. In
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Fig. 5 Metrics of our method under different dictionary sizes:

Liu et al. / Front Inform Technol Electron Eng 2025 26(7):1180-1193

Size: 513
~==- Size: 1025
— __B1_5 —— Size:3201

“B1.4

08

B23 G 06
[ 04

2 \

- B13

B24 —

'B3.3

" B27

(a) score of our method under different

dictionary sizes; (b) MAPE of our method under different dictionary sizes. B denotes bearing

the future, we are committed to analyzing and mod-
eling the effects of dynamically changing operating
conditions on the bearing’s RUL, so that it can be
adapted to a variety of complex industrial production
environments.
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